If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-19x+20=0
a = 3; b = -19; c = +20;
Δ = b2-4ac
Δ = -192-4·3·20
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*3}=\frac{8}{6} =1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*3}=\frac{30}{6} =5 $
| 2n+69=85 | | 60x-1,2x^2=0 | | 5x+40=3x-26 | | 5n+46=71 | | 22.4+5y=9y+12 | | 2n+76=84 | | 4n+45=57 | | 3n+23=29 | | 2w+7=7w+27 | | 4(1+2x)−3x= | | 4.9t^2=15.4t-4.9t^2 | | 2k=+12=-4 | | M=2n+5 | | 1x÷5=2555 | | C=5/9x | | (8−x)(6+2x)(x^2-36)=0 | | 18+1x=76 | | 2(3r+11)=7r–3r | | 18+2x=76 | | 9^x2-44=3^14x | | 15=-7d-4 | | 49x=147 | | 7x+9=11x= | | Y=1-4c | | 4x(2x-7)=12 | | 7x+-10=3x+13 | | a=53a-7 | | 2x+34=11-38 | | $4x+$10=$23.80 | | X^2+29x=-180 | | x−3=0 | | 2x+12=19-5x |