If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x-88=0
a = 3; b = -18; c = -88;
Δ = b2-4ac
Δ = -182-4·3·(-88)
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{345}}{2*3}=\frac{18-2\sqrt{345}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{345}}{2*3}=\frac{18+2\sqrt{345}}{6} $
| 16=16+1.5x | | 90=3x(Y+12) | | 6x+33=9x+221 | | 3k=-5k-4÷6 | | -2x+5=9x+27 | | 4a+12=7a-15 | | 12c-5=9c+22= | | 2/8x=6 | | c-89=92 | | 3(-4w-5)=7(5+w) | | 12=x+3.5 | | 18=s+33 | | 8m^2-72m=0 | | 12c-5+9c=22 | | (x-6)^2=2 | | 26/x=5-2 | | f+49+65=180 | | 24+d=52 | | 10xx=10x0.4 | | X^2-2.6x+1.7=0 | | 13m=5m+16-48 | | 1/2m+22m=-2 | | -5(16)=2y | | X3z=9 | | r2+5r+6=0 | | -7=x÷-7 | | (2x*2-18)×(3x*2+12)=0 | | 10x-x=5.5-0.5 | | X^2-8/3x+16/9=0 | | 2b=–32 | | y=5(-8)-3 | | X-18+41v=90 |