If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x-6=0
a = 3; b = -18; c = -6;
Δ = b2-4ac
Δ = -182-4·3·(-6)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{11}}{2*3}=\frac{18-6\sqrt{11}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{11}}{2*3}=\frac{18+6\sqrt{11}}{6} $
| 86-w=284 | | 2(x+1)^3/2=128 | | 3x+8=7-2x | | 8q=9q+1 | | 342=159+c | | 9-3y=5y-23 | | w-683=47 | | 8x+1=-77 | | 12-4/3t=t | | 1-h/72=0 | | 21=b/7+1 | | 5x+2(8x+6)=6(x-2) | | 154=12t=10 | | 2x-7+2x-7=126 | | 6x*(4-1)=(*4)-(*1) | | 5(3k+3)=5(4k-40 | | 2=1+11/s | | 1=w/6-12 | | 74=9t-7 | | 12-2/3t=2/3t | | 74 =9t−7 | | -7x+6=-12+x-6-8 | | 40=4n-3 | | 11+g/32=24 | | 2(k-9)+4k=-5(6k-8)+14 | | 9m+8=35 | | 3n-5=25n= | | -3(n+6)-3=2n+24 | | 12=48/s+8 | | 32=2w+10 | | 3x+2+6x-11=180 | | 5(x-1)=5x+5(3x-4) |