If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18=72
We move all terms to the left:
3x^2-18-(72)=0
We add all the numbers together, and all the variables
3x^2-90=0
a = 3; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·3·(-90)
Δ = 1080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1080}=\sqrt{36*30}=\sqrt{36}*\sqrt{30}=6\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{30}}{2*3}=\frac{0-6\sqrt{30}}{6} =-\frac{6\sqrt{30}}{6} =-\sqrt{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{30}}{2*3}=\frac{0+6\sqrt{30}}{6} =\frac{6\sqrt{30}}{6} =\sqrt{30} $
| 11x-15-3x=22 | | 0=-16x^2+1362 | | 25t2-20t+4=0 | | (4x/x-5)=8 | | a+40=3a | | 5x-15-4x+10=x | | 5x-9x-10=-4x+7-10 | | 1,5x-6=2x+3 | | -62=-10n-2 | | 2y+(-2)=4 | | 8+b/14=5 | | 35-7a=-8(5-a) | | 8-8+24x=23-x | | 3(t-4)=3t-4 | | 3(3+5n)=-40+8n | | (-p^2)+p-0.1=0 | | d/31=18.1 | | -30-8n=-4(3n+3)+6 | | 5x-1=50+2x | | 3x-5(2×-1)=5×+17 | | |2+7v|=16 | | (x/5)=-15 | | 123x+625x=34 | | 2p+9=-7 | | -7f+14=-63 | | −7x−1=−9x−17 | | -34=2n | | -6(-5+5n)=-7n-39 | | 30=-12u | | 0.5x+5.5=21-x | | 2(x-15)=-12 | | 5(w-9)^2+3=248 |