If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-17x+7=0
a = 3; b = -17; c = +7;
Δ = b2-4ac
Δ = -172-4·3·7
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{205}}{2*3}=\frac{17-\sqrt{205}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{205}}{2*3}=\frac{17+\sqrt{205}}{6} $
| 5^(2x-5)=210 | | 5(x-1)=4(x+2)+2(x-7) | | 6y2−5y−15)(2y+3)=-1 | | q-35=43 | | -4a+6+5a=7a-8a | | 4x+24=-20 | | j=40/5 | | (p-5)^2=0 | | 2(5y-2)=6 | | 2x3x-2=54 | | -6+10k=9k | | 12x+158=6x+32 | | s+11=39 | | 24+6+2x=60 | | 12/x=12/25 | | 2x-142+1x+16=180 | | (x-4)+(x+5)=5x-20 | | 5+x/3=9-8x/6 | | 6((y+1)=3(y+3) | | 3=b/9 | | (x-4)+(x-5)=5x-20 | | x+8/2=-5 | | (4+4x)-3+3x=5 | | 12s+12=156 | | u=23-11 | | 8h+-5=3h | | 16l+32=144 | | 18.5=3/7x | | 4y+1=105 | | 22=x*4 | | (4+4x)-3+2x=5 | | 2x+1=-76 |