If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-12x-1=0
a = 3; b = -12; c = -1;
Δ = b2-4ac
Δ = -122-4·3·(-1)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{39}}{2*3}=\frac{12-2\sqrt{39}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{39}}{2*3}=\frac{12+2\sqrt{39}}{6} $
| 2x^2-23x+56=x^2-13x+31 | | 73+k=95 | | (3y-5)2-6y=y=-1.1 | | 2(1.7m−2.1)=12.02 | | 152=16x | | -2x^2+4x-2=-x^2+2x-1 | | -3x^2+12x-11=-2x^2+6x-6 | | 0.75+p=0.2 | | 5x^2-125x+200=0 | | -2x^2-18x-22=-x^2-12x-14 | | 5(x+2)-(4x+3)=6 | | -2x^2+10x=-x^2+5x | | 2+5x10=A | | 5(x+4)=6(x-3) | | 3x^2-14x+19=2x^2-8x+10 | | c+22=75 | | 2x^2-3x-252=0 | | F(x)=3x2+12x+7 | | 3.2b-5.7=20.1 | | 6d+136=400 | | -3x^2+19x-43=-2x^2+11-27 | | 32-11x=-3x | | 39-7x=-4(7x+7)=4 | | 3x^2+13x=2x^2+8x | | 9x+26=5 | | 3x^2+17x+25=2x^2+10x+13 | | 2^3x-4=32^x | | 7x-3=-9-10x | | 2x-4=(3x10+2 | | 5x^2+52x+175=0 | | x-(3x-4)=3(3) | | 2x^2+5x-8=x^2+3x-5 |