If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-11x-20=0
a = 3; b = -11; c = -20;
Δ = b2-4ac
Δ = -112-4·3·(-20)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-19}{2*3}=\frac{-8}{6} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+19}{2*3}=\frac{30}{6} =5 $
| 2x^2+20x-96=0 | | m-40=-38 | | -6z-7=17 | | u+-136=-827 | | 15y-10y-6=94 | | 3(6-4x)-1=89 | | -15=2a+7 | | 7x+8x+9=8x+7x+12 | | 7,5-(25-5y)=8y-34 | | X2-9x-136=0 | | 2x2-33x+170=0 | | 5(6x-3)=195 | | 6x+21=9(5-4x)+8 | | -26=2(1-3v)+2(8+2v) | | -3(8+2x)+6=-18-6x | | s+-432=-269 | | −1.8=9.4+a. | | 6-(5-x)=-3x-11 | | -715=v+-966 | | 2a+2a=4 | | 15y-10y-6=94.40 | | 5-4(3x+4)=-11x+1 | | -4(3x+4)=-11x+1 | | s/31=-26 | | 14/7=n21 | | -134=-4(2+5x)-x | | 10x-54=31+5x | | 4y-2=20,y | | 4x-33=3+x | | 11q=264 | | u+388=-123 | | 8(-7p-7)=-5-5p |