If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x+6=0
a = 3; b = -10; c = +6;
Δ = b2-4ac
Δ = -102-4·3·6
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{7}}{2*3}=\frac{10-2\sqrt{7}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{7}}{2*3}=\frac{10+2\sqrt{7}}{6} $
| 7x+48=-8x+3 | | -8(3x+7)-12=6(x-3)-7 | | 13d-1/3(15-6d)=25 | | 5/2=u-7/2 | | 8x+26=-3x+6+13x | | 6x-3+5x+11=8x-12= | | -5/6y-1/5y=4/3-1/5 | | x-17/6=13/12 | | 14x=61 | | x(x+10)(4x-10)=-180 | | x(x+10)(4x-10)=180 | | 5a-(6-a)=3a-21 | | 0=4x^2-x-5 | | 6a=3a-21 | | 7/8k=7/10 | | 5c=-5c-10 | | (10x+21)+13x=180 | | R=5.1x-0.03x^2 | | -27=27+9b | | -3(4x=5)+4x=1=-30 | | (4x-10)(4x-10)=180 | | -8x(3x+7)-12=6(x-3)-7 | | 34=-9v-38 | | M=2.5m+35 | | 3(-x-2)=3(x-2) | | 4x-1+3x+x+2=89 | | -2(5x=4)-3x+3=-18 | | Z=3/5(y+X) | | -16-6x=-6(x+3+ | | 8.8a-7.8a+6.5=-6.2 | | 8-b=23 | | -6x-6=8x+5 |