If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10=25
We move all terms to the left:
3x^2-10-(25)=0
We add all the numbers together, and all the variables
3x^2-35=0
a = 3; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·3·(-35)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*3}=\frac{0-2\sqrt{105}}{6} =-\frac{2\sqrt{105}}{6} =-\frac{\sqrt{105}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*3}=\frac{0+2\sqrt{105}}{6} =\frac{2\sqrt{105}}{6} =\frac{\sqrt{105}}{3} $
| w/19=7 | | 23x+15=−30 | | 10+5n=8 | | 878=t+229 | | n=25+3(9) | | 784=n-(-89) | | n=25+3(5) | | 6n=48, | | 1/8y=1/2-3/4 | | 18=g-30 | | n=25+3(10) | | 105=15x+30 | | -7d=-378 | | 6x=10x-6 | | n=25+3(15) | | 8.z=40 | | n=25+3(20) | | 130=-5c | | a°+55°+47°=180 | | v/24=25 | | 2.5(4.6r-9.8)=51.6 | | -298=c-936 | | (9x-43)+(5x+1)=180 | | 3.2(7.7r-2.7)=48 | | n=25+3(30) | | -15=y/26 | | -2x-4.4=-1.5+4.8 | | n=25+3(40) | | 12/4b=5 | | q-420=199 | | 95=u+71 | | 26u=182 |