If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x-5=0
a = 3; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·3·(-5)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{61}}{2*3}=\frac{-1-\sqrt{61}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{61}}{2*3}=\frac{-1+\sqrt{61}}{6} $
| 9=11-2r | | 3x-10=x=4 | | 39-u=209 | | x^2+x/2-2x^2-3x/4+x=0 | | 5y+48=6y+40 | | (5x-8)8=3(x+4) | | x–4=-56 | | 7x-10=6x+6 | | x(x-6)=x^2+6x+7 | | r–4=-56 | | 52/k=4 | | x+12=31-3x | | -4w4=8 | | 5r+16.2=2(3r-4.03 | | 2x(x-1)/3-x-1/6=-1/12 | | 15+14+8.5x=1.5*8.5x | | 6x+22=64+4x | | 7v/5=21 | | 6x+2=3x+47 | | 3(x+2)=3x- | | 0,5x=4/3 | | 51=3(3x-2) | | 69=3u+15 | | 28-2p=4p+8 | | -8(x-4)-3(2-x)=-9 | | 5+a=25a=20-20 | | 5+a=25a=20 | | 10x-4=2x-3 | | −5(2x−9)=2(x−8)−35 | | 1y+10=2y+10 | | y(y+2)+y+2=0 | | 2v^2+12V+25=(V+7)^2 |