If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-20=0
a = 3; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·3·(-20)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-17}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+17}{2*3}=\frac{10}{6} =1+2/3 $
| 3^2t-3^t-6=0 | | 4.6x+1.06=27.75 | | 3(4+p)=30 | | (5y-5)+120=180 | | -4x+2.9=7x-4.1 | | -5/6+g=4.2/3 | | 6x-x=-36 | | 4(k+5=2(9k-4 | | 8+8(8-8x)=8 | | 9n=1/729 | | 54=11w-2w | | 16=-6m+12 | | 17x+29=80 | | 54=11w-w | | 5p-5p=-12 | | 4=2t+10 | | -7+36=-8x+3.2 | | 5p-5p=12 | | -6x-4(x+5)=-70 | | |2y+7|=8 | | -5+3a=-5+2a | | 6x+4=2x+2x+18 | | X/3+5=x-1 | | 86+x=x/2=90 | | -10.9=x/3-3.4 | | 7^10*a=21 | | 6x+10x=-1 | | w=56÷(2^2+3) | | m/8=7/5 | | 7z+14-3=44 | | -.5(12v-20)+4=-12-8v | | 3(-3x+7)=-87 |