If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-16=0
a = 3; b = 6; c = -16;
Δ = b2-4ac
Δ = 62-4·3·(-16)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{57}}{2*3}=\frac{-6-2\sqrt{57}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{57}}{2*3}=\frac{-6+2\sqrt{57}}{6} $
| 4x-(9=3x)=11x+1 | | (X/x-4)+5=4/x-4 | | 7y+2-2y=9+4y-4 | | 10(4g-12)=44 | | 6z-9=7z-5 | | 2=22-2f | | 2y=6/14 | | -2(2x-4)=-3x+7-(x-1) | | 7x-5=9x-3x | | -7(-3+8b)=-5b-30 | | 20x+5x=175 | | 25+3c=13 | | 2x+.8=5.4 | | 28-4b=16 | | 3x+2=3(6x-6)-8-15x | | 28b-4=16 | | 5(c+5)-12c=6 | | 6n*2-18n-24=0 | | B(b-7)+20=10 | | 2(-4+7m)=-120 | | -7(x-5)-2=24-(x+3) | | 5(c+5)=12c=6 | | 2x+5/7=3 | | 7=p/3-(-5) | | 2(-4+7m)=120 | | 5(c+5)-12c=-6 | | 4-2g=8 | | 0.18x^2-55x-30*60*55=0 | | 0.8x=0.6+0.7x | | 2+2*2-2/2+2=x | | 0.36x^2-55x-30*60*55=0 | | 10*6s=4s+112 |