If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x+2=0
a = 3; b = 6; c = +2;
Δ = b2-4ac
Δ = 62-4·3·2
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3}}{2*3}=\frac{-6-2\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3}}{2*3}=\frac{-6+2\sqrt{3}}{6} $
| -7x+3=30-2x | | -62=-11x+3(x+6) | | (x-4)(9x-3)=0 | | 7(x+14)-5-12x=53 | | F=0.02x^2+17 | | X-4=25c | | 4(x+6)-x=-12 | | 26.00+3d=205.50 | | 11+72/z=201 | | 2.6+x=7.8 | | 12x-10=20x+6 | | 3x+3(2x-34)=-3 | | x3+x+8=0 | | 5t−3t=16 | | 7x-10(8+5x)=6 | | h+9h=10 | | 3x=240000 | | )2x-7=23 | | 5q−q=8 | | 48=3s+6 | | 2x1(x-4)=x-4x6 | | 7x^2+35+42=0 | | 2(6x+2)=2(2x+10) | | 10+7m=89 | | 1.06^x=0.7 | | 2x+32=4 | | 2x(x-4)=x-4x6 | | 5x+7=95 | | 12=2x-8+3x | | 10y-2=6y-30y= | | 2(3x-1)=2(4x+5)+8 | | -18=f/3-20 |