If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-5=0
a = 3; b = 5; c = -5;
Δ = b2-4ac
Δ = 52-4·3·(-5)
Δ = 85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{85}}{2*3}=\frac{-5-\sqrt{85}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{85}}{2*3}=\frac{-5+\sqrt{85}}{6} $
| (-1/6)((-6x+6)-6)=0 | | 2x^2-5x+52=0 | | (2x-6)/(x+7)=7 | | (3x)2-10=56÷4 | | 2.9x-10.77=7.5 | | -8-2/5m=(m-7) | | 3/7=2y | | 15/2y-25+3y=-6 | | 5+3x=4=4x | | 15-2y-25+3y=-6 | | 4(2y+4)=6(2y-1/2) | | t^+8t+16=0 | | -4.k=15 | | (1/2)x+2=3x | | 8.9-3a=5.6 | | (1÷2)x+2=3x | | 2x-5(2x+3)=5x | | 4+4x+6=2x+2 | | 9x^2-9=40-x^2 | | 18m-8=2 | | -7(3p)+4-10=2(2p+6) | | x5+7=8 | | 17x-2=3x+8 | | 9b-7(25-b)=33 | | w4-9=2 | | b10+23=40 | | q3+6=18 | | 2/3r-5=7 | | 2(4x-3)=10x+8= | | 6x+12=x+9+2x | | 12=14a | | -9x+5x=7-5x |