If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x+25x=3
We move all terms to the left:
3x^2+5x+25x-(3)=0
We add all the numbers together, and all the variables
3x^2+30x-3=0
a = 3; b = 30; c = -3;
Δ = b2-4ac
Δ = 302-4·3·(-3)
Δ = 936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{936}=\sqrt{36*26}=\sqrt{36}*\sqrt{26}=6\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{26}}{2*3}=\frac{-30-6\sqrt{26}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{26}}{2*3}=\frac{-30+6\sqrt{26}}{6} $
| (5a+1)=-(a+9) | | g-15=29 | | r+16/5=6 | | -10(-2h-5)=2(10h+40) | | -10+x)2=30 | | 99.2=62y | | 4/(d-7)=524 | | |9d|=-36 | | x2+6x+36=0 | | 9(=11x+4) | | 10+1.50t=12.50+1.00t | | 10x-14x=28 | | h+21=63 | | 12x^2+25x-50=0 | | (5a+1)=a+9 | | 3x^2-2x-896=0 | | -3c=37 | | −3(t+6)=0 | | x+4/16=5/8+x-1/4 | | 4+2p=36 | | -6n-9n=45 | | (5x+14)+(2x+50)=180 | | t/3−2=2 | | 7(5+2c)+3c=7= | | 3x^2-6x-896=0 | | z4+6=10 | | z4+ 6=10 | | x+4/16=5/8+x-1/7 | | -21(-4m-6.4)=44.8 | | (3/(5x))+(7/(2x))=1 | | (11x-12)+(3x+18)=90 | | 0.1x+0.15(20-x)=(0.12)(20) |