If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+36x=0
a = 3; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·3·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*3}=\frac{-72}{6} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*3}=\frac{0}{6} =0 $
| 15=(11x)+(x+3) | | 5-2+2x=2x-3 | | 5-2+2x=2x3 | | 3.4/26=x/156 | | 18=(x+10)+(7x) | | 3x+6=-+2 | | -5(x-10)=36 | | (3x−21)=(2x−13) | | r1119=70 | | 5x-3=(3x)+(x+16) | | -3(x+7)+10=15 | | 6c+14=-5c+4+9c6c+14=−5c+4+ | | 2w+12=-2(w+6) | | 6(c−94)=18 | | 5x-3=3x+x+16 | | x/4+1=-75 | | 72=2(m+18) | | 5(v+5)=8v+22 | | z/9+47=52 | | 2f-24=8 | | 5(x-3)=-x+15 | | 2x+20=320 | | y-1.7=3.3 | | 24−2f=8 | | 3=x^2+4x-5 | | (3x+26)=(x+20) | | x-(-15)=75 | | 9=c-31/4 | | 7y+3.5y=-6 | | 8=14+7y | | c−31/4=9 | | 12+-1/4x=10 |