If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+36x+24=0
a = 3; b = 36; c = +24;
Δ = b2-4ac
Δ = 362-4·3·24
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{7}}{2*3}=\frac{-36-12\sqrt{7}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{7}}{2*3}=\frac{-36+12\sqrt{7}}{6} $
| M+m+12=3m+2 | | 3(x+8)-2x=25 | | X-3y-14=0 | | X-y-14=0 | | 4n+4=6 | | 8/x+9/x+5=3 | | 2x+3(x-8)=-19 | | 6m=240 | | 3x-11=3x+13 | | 3x-17=2x+56 | | m/12=204 | | 7p=217 | | 2.3x+5=17 | | 6(x–8)+22=-2 | | 9x-5=6x+9x-10 | | x/4+15=16 | | 3x+4(1)=-5 | | 121+2x=118 | | 7(x+4)–4x=37 | | 1=6p+8 | | 20I+25y=1115 | | 26=-3/5y | | αdβ+βdα+αβ(3dα+dβ)=0 | | 11y^2=-11y | | 2(-5x+9)+30=88 | | 6^x-1=1/1296 | | 17=25-z | | 2z÷9=5 | | 2x6+3=1/2+30 | | x/5+19=22 | | 6y-30=-10y+2 | | 2+-7+3x=4x+2 |