If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+36x+12=0
a = 3; b = 36; c = +12;
Δ = b2-4ac
Δ = 362-4·3·12
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-24\sqrt{2}}{2*3}=\frac{-36-24\sqrt{2}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+24\sqrt{2}}{2*3}=\frac{-36+24\sqrt{2}}{6} $
| 2(x+7)+3x=44 | | -5(x+4)=-60 | | (9x-1)°=(20x+7)° | | -8y=312 | | 11x-2x+6=16 | | 7x-2x=19 | | t=35+7*14 | | 741=19v | | 9700=5500+175x | | 4m +8=10 | | 3+4(x-2)=7 | | 4(x+6)=1+4x | | (2x)+(20)=(6x)-(12) | | 369=27x+72 | | 261=(27x)+72 | | 4(x+6)=1+ | | -5n+3=3-5n | | -2(-6u+3)-u=3(u-2)-2 | | x+2/6=5/3+x-8/2 | | -5u+3(u-6)=-26 | | -29s=-174 | | 3/4(x+1)=1/5(2x−5) | | y2−54=0 | | 5y^2+20=100 | | 4x+2=2x+38=180 | | –29s=–174 | | −4x+11=−5x+32 | | 12f/3+4f=60-4 | | 3.14=14c | | 3r+1=6^2-r-3r | | 4x+2+2x+38=180 | | n+(n+1)/2=30,5 |