If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-6=0
a = 3; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·3·(-6)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{19}}{2*3}=\frac{-2-2\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{19}}{2*3}=\frac{-2+2\sqrt{19}}{6} $
| 3,5x=10 | | X3+12x+10=0 | | 5(2y-9)=23 | | 10x+4=16+7x | | 3x3=3x(1+2) | | -x+2/3-4-2x/2=1/6 | | 3x+17–x+5=–2 | | 2=4x/8-6 | | 0.4=0.88^t | | X+x+x+2+x+4=300 | | y=0.5(4)^2 | | 2x+9-5x=-5x-13+7-x | | 1/3x2-7=-4 | | y=64+48 | | 8y2=968 | | 3^(x-3)-8=11 | | 2n-15=41 | | 7=(y-5)/2 | | 6n-32=3n | | 42+9m=105 | | 15b+18=75 | | 18+x×15=75 | | 3/4x-13=41 | | 16n-7=105 | | 2x^+5x-1=0 | | 41x-13=13 | | 3/4x-13=13 | | (3^x)^3=1/27 | | 7y+8=9y-7 | | 3/4x-17=37 | | 90+12m=282 | | 2/5x-16=18 |