If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2=5x
We move all terms to the left:
3x^2+2-(5x)=0
a = 3; b = -5; c = +2;
Δ = b2-4ac
Δ = -52-4·3·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*3}=\frac{4}{6} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*3}=\frac{6}{6} =1 $
| 5x+15=3x+6-8 | | 9r-2-6=1 | | 4.9t^2-3t-23=0 | | 3/x-1+4=19/x-1 | | 4^(2x)-2^(6x-6)=0 | | 8x+2(6x-93)=21 | | y^2=-25 | | 3x+3(3x-87)=21 | | 2(w-6)-4w=-32 | | 1/2n+55=125 | | 437=x^2+50x | | 8x+3(6x-93)=21 | | X+4/14=5/7+x-3/4 | | 4.4+1.4n=0.62 | | -4v+8=-6(v+2) | | 2.01-6=-0.15c+6.96 | | 7-1x0+3÷3=6 | | 56/4+15y=14 | | 2(2x-7)-4=2(x-4)-6 | | 5x+12=-2 | | 8x+3(6x-93)=44 | | 3u-16=5(u-6) | | (2x+1)(x-4)+13=2x²-10x | | 4(m-7)=3 | | 1/4(-x+2)+4=4(2x+4) | | 9(x-1)=4x+16 | | 12-7y/6=2y+1/9 | | X-9/x=2/5 | | f(0)=2,f(2)=4,f(-1)=7 | | 5x+7=-8+3x+23 | | X^2+16z+44=0 | | x2−9x=0 |