If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+28x+9=0
a = 3; b = 28; c = +9;
Δ = b2-4ac
Δ = 282-4·3·9
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-26}{2*3}=\frac{-54}{6} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+26}{2*3}=\frac{-2}{6} =-1/3 $
| 5(y+10+4)=180 | | 27x^2+36x-13=0 | | 4^x=52 | | Y=-1q | | 42+5x=11x | | 5=-6x=61 | | 8-w=3w | | 2x-8/2+7=x+7/7+8 | | Y-3=1/2x+1 | | 3x^2−29=8 | | 165=(2x+8)(2x+4) | | 3x2−29=8 | | 10t^2=7t+1 | | 3a-6(a-8)=42 | | 8v=3v+40 | | 10p-28=20-2p | | 16^x+7=3^-8x | | (2(x-7)/3x+5)-2/5=0 | | 40p+50=p | | 14-x+3=15 | | -5=50+-5x | | 20+4y-5=-6+2y+40 | | 11^x+10=16^8x | | 2(x-7)/3x+5=-2/5 | | -12x-5=-41 | | x+30+36+83=180 | | 6x-19=2(×-1)+11 | | 6x+35=63 | | 4x+188=6x+246 | | 7a=11 | | x+41+80=180 | | 5(x+2)^3=40 |