If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+270x-104000=0
a = 3; b = 270; c = -104000;
Δ = b2-4ac
Δ = 2702-4·3·(-104000)
Δ = 1320900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1320900}=\sqrt{100*13209}=\sqrt{100}*\sqrt{13209}=10\sqrt{13209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(270)-10\sqrt{13209}}{2*3}=\frac{-270-10\sqrt{13209}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(270)+10\sqrt{13209}}{2*3}=\frac{-270+10\sqrt{13209}}{6} $
| 3(2x+5)=5(2x+1) | | -7-5a=7(8a-1 | | 3(x−7)=5(3−x)+4 | | 2x-3/4÷9x+4/7=35/68 | | x-0.25x=400 | | -7y÷2=1 | | 13x+45=162 | | 2x(x+6)=224 | | 3(3q-4)=81+q | | 7-12x=-77 | | 10x^2+176x-72=0 | | 4x-17=4x+17 | | 5x^2+100x-24000=0 | | 1-(k+1)÷(2k+5)=2/3 | | 1-(k+1/2k+5)=2/3 | | 1-k+1/2k+5=2/3 | | (b-1÷4)+(2b-3÷2)=b-(1÷2) | | -5m+7=13 | | -15x+30=-45 | | 5x^2+250x-150000=0 | | 5x^2+25x-15000=0 | | -3(x-5/8)=3/18 | | -3/4x+0.5=7)8 | | 3m=5m-8÷7 | | 4x+20+2x+10+x+10=180 | | 4x2-x=2x2+7x | | 5x2+4x=2x2-5x | | 12(2x+2)=5(x+2x) | | 8)2n-3=39 | | 9(x-2)=4 | | n2=50 | | -4(x-7)=-20 |