3x2+2(x2-20)=16-2x2

Simple and best practice solution for 3x2+2(x2-20)=16-2x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2+2(x2-20)=16-2x2 equation:



3x^2+2(x2-20)=16-2x^2
We move all terms to the left:
3x^2+2(x2-20)-(16-2x^2)=0
We add all the numbers together, and all the variables
3x^2-(16-2x^2)+2(+x^2-20)=0
We multiply parentheses
3x^2-(16-2x^2)+2x^2-40=0
We get rid of parentheses
3x^2+2x^2+2x^2-16-40=0
We add all the numbers together, and all the variables
7x^2-56=0
a = 7; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·7·(-56)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*7}=\frac{0-28\sqrt{2}}{14} =-\frac{28\sqrt{2}}{14} =-2\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*7}=\frac{0+28\sqrt{2}}{14} =\frac{28\sqrt{2}}{14} =2\sqrt{2} $

See similar equations:

| 11=-6x-2 | | y/9=16/36 | | 9-(-2x+3)=2+4 | | h=5-3h | | 4(x/2+1)=6 | | 61+(10x+69)=180 | | 61-(10x+69)=180 | | 20x+40-x^2-2x=121 | | 5x^2-11x-14=-8x | | -18x-5=-13 | | 11x^2-5x+3=x^2-4x | | 2-2t=4- | | 23=41-7(-2-3w) | | 11x2-5x+3=x2-4x | | x^2-11x-106=-4 | | 11=–6x–2 | | X+2=4)x+35 | | 96+(9x+66)=180 | | 17x^2-12x+5=9x^2 | | 96-(9x+66)=180 | | 3x+10=5+4x | | -10(x+2)+113=30+23 | | x+56-28=180 | | 9x+18-3x+6=0 | | 75+(14x+21)=180 | | 60=1.5^x | | y-21=14 | | 75-(14x+21)=180 | | 5y2+18=143 | | 1/2y=+2 | | x,5=-3 | | -2f=-8 |

Equations solver categories