If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+19x-7=0
a = 3; b = 19; c = -7;
Δ = b2-4ac
Δ = 192-4·3·(-7)
Δ = 445
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{445}}{2*3}=\frac{-19-\sqrt{445}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{445}}{2*3}=\frac{-19+\sqrt{445}}{6} $
| 3a+5=12-10a | | x+(x*0.015)=3426.362 | | 1/3(z+4)−6=23(5−z) | | 9x+2=5(2x-2) | | 9v-3=17+4v | | (0.2*x)+1=(0.33*x)-5 | | 6x-5=30+ | | -8m-m+4=49 | | 9y/7+y-16=0 | | (6x+4/4)=6x+2 | | p(1-p)=0,28 | | 9x-8=2x+6 | | x/3=1,5/6 | | -0.66666667x+9=1.33333333x+-3 | | 6x-7,2=0 | | 5(2x+1)=-2x-31 | | u=9=-10 | | 2x/3x=8 | | 17x–5=15x+3 | | 9x=-68+5 | | 9x5=(5x5)+(4x5) | | 192/e=6 | | z=0.13 | | 16+y=19 | | (x÷3)^2=6x+34 | | –3x=87 | | X3-18x2+52x-27=0 | | –2x–10=18 | | –2x-10=18 | | (x-2)^2=8-4x | | 0.04x=230 | | 15x20=5x |