If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+19x+-7.5=0
We add all the numbers together, and all the variables
3x^2+19x=0
a = 3; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·3·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*3}=\frac{-38}{6} =-6+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*3}=\frac{0}{6} =0 $
| v+5/8=91/3 | | 110=2.20+2w | | 4a+-9=7a+12 | | v+5/8=1/3 | | 17=10+m/2 | | 5^x-7=118 | | 3r=-30 | | H(t)=-16t^2+48t+3.5 | | .6w=0.48 | | 4(–x–1)+5x–2=–2x–x | | 8-5x=-10-8x | | .7(7x+14)=1.2-(x+2) | | -7+4t=21 | | F(0)=5/3x-4 | | 5(2-6x)-7/4=12 | | 2x+6-10x=40 | | -6c-8-2c=-6 | | 10p-2=-5 | | 78=18-15y | | -16/r+8=10 | | 2(5y+-2)=26 | | $0.35n=$35.00 | | -3-3n=2-4n | | 2x+x^2+7=0 | | 5=7-2g | | 2(x+7)=3(x-1)=72 | | 94-116=-8(-4y)-17(2y)+y | | -12=3x+15 | | 3(7)^x-6=8 | | 5(4+k)=-10k | | 22+24.50x=47+18.25x | | 3/4m+7=-11 |