If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+16x-3584=0
a = 3; b = 16; c = -3584;
Δ = b2-4ac
Δ = 162-4·3·(-3584)
Δ = 43264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{43264}=208$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-208}{2*3}=\frac{-224}{6} =-37+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+208}{2*3}=\frac{192}{6} =32 $
| -2(3n+2)=-12-7n | | 2/3*x=30 | | x/6=1.9/4.5 | | 60=v=28 | | 3x+5+x+25=180 | | -8n+10=-8n+6 | | 2.33-13.6a=-17.5a+11.78-2.4a | | 10(x+8)-13=2(x+8)+11 | | 3x-6/9=12 | | G(x)=5+6/x | | 6/4.5=n/1.9 | | (x-8)2-81=0 | | 8(4x-4)+5x=79 | | 14-x/4=x-3 | | 0=x^2-168x+6400 | | 4x+2((-2x+24)/4)=24 | | 2g−13=32g | | 9+2|4x-3|=-19 | | -6(4x-4)+2x+2=-3 | | 8j–8j=0 | | 4n+8=8-4 | | (3x+5)+x+25=180 | | m=-9+m | | (x-8)^2=25 | | 2=r/9+1 | | -5/6n=15 | | 1x+6=3x-2 | | 3x/7+2=6 | | -(2p-4)-2=-3(6+2p) | | X-7=5x-45 | | G(0)=-3x+10 | | 2/3x+9=5 |