If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+16x+12=0
a = 3; b = 16; c = +12;
Δ = b2-4ac
Δ = 162-4·3·12
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{7}}{2*3}=\frac{-16-4\sqrt{7}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{7}}{2*3}=\frac{-16+4\sqrt{7}}{6} $
| -15-2n=-8n=n | | 3y+8=4y-7 | | .03x^2-2.4x+50=0 | | 2x+8-22x=12 | | 5/8n=-3/4 | | 10=14+y/8 | | -2b-8=-11 | | -9x+20=-52 | | -20.3=6p+3.7 | | 3x+2(5x-7)=25 | | 4w^2+12w+40=0 | | 3·x/3+6=-2·3 | | 180=36+46x2-3x | | 274=7v-8(1-5v) | | -7×+5-8x-1=49 | | -15y=3y | | 8(n-2)=1-(5-7n) | | 5-x/10=8 | | 4x+8x=150 | | 12.25x3.99=77.49 | | (x-1)=2(x)+3 | | 7x+28+9x=2 | | 3c+6=-13 | | 3b-4=4b-3 | | -2d-12=-10 | | 1.5x+3=0.2x+8 | | 7r-(6r-5)=6 | | w^2=4w-5=0 | | -3(1-4r)=-87 | | X+30=1.67x | | 2=1.002^4x | | 2|y+6|-3=11 |