If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x=0
a = 3; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·3·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*3}=\frac{0}{6} =0 $
| 43-w=156 | | Y-3=1/2(2x+4) | | -2/3x9=4/3x-3 | | 7x+5(x+1)=-5+12x | | 2(10x-2x+7)=3(2x+13) | | 44=4x-16 | | 3x+22/5=2 | | 10x-38=-133 | | 8-7x-x=-72 | | 180=2x+5x+5 | | 234=147-y | | 180+2x=5x+5 | | 57=2y+17 | | 5=2g-1 | | 180+2x=5x=5 | | 12=u/2+4 | | 4/m=3/m-2 | | -6=2+3b | | 24=4(u+2) | | 3x+1=5(3-2x)-x+8 | | 1/5+1/2t=4 | | .-5+t2t2=14 | | (3(t)^2)-(24t)+(36)=0 | | -20+-6n=4+-14n | | -20+-6n=4+-14 | | 5(4x+3)=145 | | -24=4u-8 | | 3(x-4)+2=x+12 | | 104-v=197 | | (4/x)=x+3 | | -4(v+6)=-64 | | 5x+14+3x-2=180 |