If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+11x-20=0
a = 3; b = 11; c = -20;
Δ = b2-4ac
Δ = 112-4·3·(-20)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*3}=\frac{8}{6} =1+1/3 $
| 2^3x=0.5^3x+2 | | 5=2x/1-x | | x=14/15 | | 144=m-4 | | -12+6y=18 | | 44x-33=11 | | 56=1-4a | | 26=3x/0.52-x | | 9(x+10)=3(x6) | | 8y-8=5y-4 | | 20=15m | | 2.3y+4.4y-3.7=-4 | | x+2–12x–4=2x–6+7x | | 16=6+b-6b | | 56x=15 | | 4(-8x-2)=-8(5x-4) | | 15=-6x+12+3x | | A=8/7(h-52) | | 27^x=3^2x+1 | | 3x=122- | | |x−11|−5=-5 | | Q=250-10p,Q=1300-140p,Q=45-0.5p | | 10x+2=22-10x | | 3x-x+4=6 | | −12x=6 | | 4x-1.2=x=3.9 | | 23x−9−2x+2=1 | | 5x+2x=24-4(x-5) | | 24=a3 | | (−12)x=6 | | 4x-5(2x+1)=1x-5 | | 5^(2x-2)+10x/25=5^(x+3)+125(2^x) |