If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x-6=0
a = 3; b = 10; c = -6;
Δ = b2-4ac
Δ = 102-4·3·(-6)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{43}}{2*3}=\frac{-10-2\sqrt{43}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{43}}{2*3}=\frac{-10+2\sqrt{43}}{6} $
| b/400=850 | | 400b=850 | | 4x-5+6x-2=180 | | 12-26x+10x^2=0 | | 12+b=48 | | 6b+54=234 | | 93+19s=891 | | 87+b=100 | | -1x-22=-25 | | 12(d-894)=420 | | 6+b=154 | | 6y+1.5=8.5 | | x2-12x=64 | | 16+7x=7x-2 | | 19v+5v-19v=5 | | 6y+3y+5y-9y=20 | | r+5r-5r=14 | | u/9=8/7 | | 13h+5h+h+h=20 | | u-7/5=10 | | 18x-16=60 | | 13d+4d-10d-3=11 | | 17z-15z+z+2z+1=16 | | x77=85 | | 3v^2-8v+36v+49=0 | | -2p-3=-19 | | 2t-2t+3t-t+2=12 | | 3(4x-3)+9=12x | | 20=1.3^{x} | | 16p-13p-2p=18 | | (1.09)^n=1.828 | | 15d+5d-14d+2=14 |