If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10=58
We move all terms to the left:
3x^2+10-(58)=0
We add all the numbers together, and all the variables
3x^2-48=0
a = 3; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·3·(-48)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*3}=\frac{24}{6} =4 $
| 112=14v | | -6b(5b+8)=17-3b | | x^2+91-5x+23=180 | | -x+(x/4)=21 | | 8y^2-1y=0 | | 12.87+0.13(x+3)=12.37+0.06 | | 22=-3x+4x-7 | | -8x-2=-5+9.8x | | 17=k-8 | | -9(t+28)=-9 | | |5x-4|-10=-20 | | r-12=22 | | 8x+7x-20=100-5x | | 5(n-7)-5=5n-40 | | (x/6)-4=-3 | | 7x+2-3x=-14 | | 12.37+0.06(x+3)=12.87+0.13 | | 19u+34+51=180 | | 5(7-3x)=20x= | | -9(x-4)=64 | | b-32+b-41=b+4 | | 1/2b=3/2b+7=21 | | 4w+w+66=180 | | 1-5(9+2)=9+a | | 64+-4=604x=60 | | 4t-5=-1 | | 3b+42+33=180 | | 4x+6=-3x+34 | | 4w=w+66 | | t-40+t-47=t+1 | | -7-5x=8(x+7)+2 | | 5z+4z+36=180 |