3x/x+1+6/2x=7/x

Simple and best practice solution for 3x/x+1+6/2x=7/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x/x+1+6/2x=7/x equation:



3x/x+1+6/2x=7/x
We move all terms to the left:
3x/x+1+6/2x-(7/x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3x/x+6/2x-(+7/x)+1=0
We get rid of parentheses
3x/x+6/2x-7/x+1=0
We calculate fractions
(-11x)/2x^2+6x/2x^2+1=0
We multiply all the terms by the denominator
(-11x)+6x+1*2x^2=0
We add all the numbers together, and all the variables
6x+(-11x)+1*2x^2=0
Wy multiply elements
2x^2+6x+(-11x)=0
We get rid of parentheses
2x^2+6x-11x=0
We add all the numbers together, and all the variables
2x^2-5x=0
a = 2; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·2·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*2}=\frac{0}{4} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*2}=\frac{10}{4} =2+1/2 $

See similar equations:

| -49=v+(-30) | | -2.8+4q=0.8 | | 2x+5=-7x+14 | | 7m-5m+10=6(m-) | | 80+12m=56+8m | | 24=3.5x+9.5 | | k/3-14=-5 | | (6x-29)=36 | | 8q=10q | | 12x+x−6x+3x−7x=15 | | 8-22x=-2 | | 2k-14=6k+30 | | -2=d/4 | | –4/9x=2/3 | | 32+a=90 | | 3b-7=-3b-19 | | 5y-23=102 | | 2x+10+3x+5=35 | | 260=-10(-6+10x) | | 19z+6=-19 | | 5y-23=-102 | | -4=d/4 | | -8b-18=-30-7b | | X+50=3y | | 3(x+2)=2x–5+4 | | x+2/3=(1/3)*x+2 | | 4/23=r-1/3 | | -4w+38=14+4w | | 2m-14=8m+24 | | 3z=8z+55 | | 5(4x-1.5x)+12=4x-5 | | (2/3)*x+4=18 |

Equations solver categories