If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x-9x^2+10=0
a = -9; b = 3; c = +10;
Δ = b2-4ac
Δ = 32-4·(-9)·10
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{41}}{2*-9}=\frac{-3-3\sqrt{41}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{41}}{2*-9}=\frac{-3+3\sqrt{41}}{-18} $
| 988=c+157 | | h+235=881 | | (8*8-32-12/x)-(40-2*10)=3*3 | | 8x+10x2-6=17x | | j/19=22 | | 4(-305+10x+2x^2)=0 | | 28=x/7+3 | | 8=3+v/4 | | 2/3x=8/15x= | | 7x+19=2x+94 | | 3=−4/g−5 | | 15x+60=150 | | 3x-525x+7=0 | | -r+9=-4 | | 25=z-73 | | 2(b+3)-17=3b-7b | | m*m*m=512 | | x/7+6=70 | | y-13=26 | | 65=w+24 | | 2(5x+9)=4(6x+10 | | g=38-6 | | 10-9x2+4x=-6x2 | | b=25/64 | | 46=4w | | 21=f-18 | | -5=-10+x/4 | | 9(5q-11)=21 | | f-26=65 | | -1/2=1/2x+1/2x+x | | -6(5x=+9)=-3(10x+8) | | 6^(x-2)+6^x=222 |