3x-5x(x-5)=8+3x+3

Simple and best practice solution for 3x-5x(x-5)=8+3x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-5x(x-5)=8+3x+3 equation:



3x-5x(x-5)=8+3x+3
We move all terms to the left:
3x-5x(x-5)-(8+3x+3)=0
We add all the numbers together, and all the variables
3x-5x(x-5)-(3x+11)=0
We multiply parentheses
-5x^2+3x+25x-(3x+11)=0
We get rid of parentheses
-5x^2+3x+25x-3x-11=0
We add all the numbers together, and all the variables
-5x^2+25x-11=0
a = -5; b = 25; c = -11;
Δ = b2-4ac
Δ = 252-4·(-5)·(-11)
Δ = 405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{405}=\sqrt{81*5}=\sqrt{81}*\sqrt{5}=9\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-9\sqrt{5}}{2*-5}=\frac{-25-9\sqrt{5}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+9\sqrt{5}}{2*-5}=\frac{-25+9\sqrt{5}}{-10} $

See similar equations:

| 56346+235365-235n=7 | | -17.9b=-17b+7.83 | | 11x-36+63=180 | | 1.8r=-12.5+0.8r | | (-5x+3)+(-7x-1)=0 | | p/5-3=12 | | -14j-12+19j=8+7j | | (-6x+3)+(x-7)=0 | | M=1/5t9 | | -5.6c+3.4=15.82-4.7c | | 5^2x=1024 | | -7v+17-10=-13-5v | | 23x-8-16x+2=19x-9-12x+16 | | 16+e=47 | | (3x+15)+(x+5)=180 | | 2x^2-17x=58 | | -8b+5=-19-6b | | 5x+8-9x=17-19x+15x-9 | | 19+3f=2f | | d+21=29 | | 5^2a=20 | | -10+2u=8-4u | | 1-5b=6-4b | | 4+1+7y=-10-8y | | X(1.5)+y=60 | | 2x+14-9x=16-13x+6x-2 | | 3x-28+3x-30+x=34 | | 5x-17=7+8x | | 15·6=(x−2)÷3 | | 6n=7n-7 | | -1+2m=-10+m | | -9-8n=1-9n |

Equations solver categories