3x-4=1/25x+20

Simple and best practice solution for 3x-4=1/25x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-4=1/25x+20 equation:



3x-4=1/25x+20
We move all terms to the left:
3x-4-(1/25x+20)=0
Domain of the equation: 25x+20)!=0
x∈R
We get rid of parentheses
3x-1/25x-20-4=0
We multiply all the terms by the denominator
3x*25x-20*25x-4*25x-1=0
Wy multiply elements
75x^2-500x-100x-1=0
We add all the numbers together, and all the variables
75x^2-600x-1=0
a = 75; b = -600; c = -1;
Δ = b2-4ac
Δ = -6002-4·75·(-1)
Δ = 360300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360300}=\sqrt{100*3603}=\sqrt{100}*\sqrt{3603}=10\sqrt{3603}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-10\sqrt{3603}}{2*75}=\frac{600-10\sqrt{3603}}{150} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+10\sqrt{3603}}{2*75}=\frac{600+10\sqrt{3603}}{150} $

See similar equations:

| 6(2x+8)=5(3x+2) | | 7x+19+9x-3=180 | | 2(7p-3)=-20 | | 16000=400x/(x^2+100) | | 3(7p-3)=-20 | | (3x-9)x+x(x+28)=184 | | (4x-7)+(3x+9)=180 | | 4b+2=42 | | 80(9-x)=60+1x | | 80(9-x)=60-1x | | x-1/x+3+x-3/x+1=2 | | 5(x-4)=9(x+3) | | 2^(-x)+1=5^x+2 | | 4x(2+8)=8(x+1) | | x+8=–3 | | 3x+6+4x-7=90 | | 0=2x2-10x-12 | | x+x(.15)=575 | | 3x+6=4x=1 | | -6x-4=-4x-10 | | 2^(-x)+1=5x+2 | | 2x+13+4x-25=90 | | 5x+21=63-2x | | x³-9x+10=0 | | Y-3=4(x+8) | | 2(7x+9)=3(3x+7) | | 2.5(6x-4)=10+5(1.5+0.5x) | | 6x-8=4x-24 | | 2.5(6x-4)=10 | | 80+9x=60-1x | | 80-9x=60-1x | | 80+9x=60+1x |

Equations solver categories