3x-4(1-3x)=2x(x+1)

Simple and best practice solution for 3x-4(1-3x)=2x(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-4(1-3x)=2x(x+1) equation:



3x-4(1-3x)=2x(x+1)
We move all terms to the left:
3x-4(1-3x)-(2x(x+1))=0
We add all the numbers together, and all the variables
3x-4(-3x+1)-(2x(x+1))=0
We multiply parentheses
3x+12x-(2x(x+1))-4=0
We calculate terms in parentheses: -(2x(x+1)), so:
2x(x+1)
We multiply parentheses
2x^2+2x
Back to the equation:
-(2x^2+2x)
We add all the numbers together, and all the variables
15x-(2x^2+2x)-4=0
We get rid of parentheses
-2x^2+15x-2x-4=0
We add all the numbers together, and all the variables
-2x^2+13x-4=0
a = -2; b = 13; c = -4;
Δ = b2-4ac
Δ = 132-4·(-2)·(-4)
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{137}}{2*-2}=\frac{-13-\sqrt{137}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{137}}{2*-2}=\frac{-13+\sqrt{137}}{-4} $

See similar equations:

| 3p-9=-2p | | 3^(6x+5)=5^(2x) | | (3-2x)(2x+4)=(2x-3)(3-9x) | | 16y-40y+25y=0 | | 2x+7=5x+38 | | 5(29/3-4y/3)+2y=39 | | (2x+7)=3(5x+38) | | n÷8=2.5 | | 7-3x-x=-13 | | 11x-3(3x-1)=5x-(x-3)-8 | | 7-5/6x=-18 | | 7+14z-6=7z+61-5z | | 2-3y+1=0 | | 2/11x=5/8 | | -3/7x=-15 | | 2n+2(n+0.6)=2(2n)+2(n+0.1) | | -(2x-4)=-(5x+6)+1 | | -6x+-10=13x+-3 | | 4x+4=14x+10 | | 7=4(1.25x-0.75) | | 10+6+2x-4=180 | | 3x^2−11x−14=0 | | -96x^2+72x-12=0 | | 2x=14/21 | | 24x+71=x+2 | | 6x^2-14x-9=0 | | 29x+3)-7x=18-5(x+4) | | (1/4)^3x^2+1=128^x | | 10-5=12-x | | -6-6x-7x=-110 | | -1=−3×0.75^2x | | 0=−3×0.75^2x+1 |

Equations solver categories