3x-2(x-5)=2x(x+3)-8

Simple and best practice solution for 3x-2(x-5)=2x(x+3)-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-2(x-5)=2x(x+3)-8 equation:



3x-2(x-5)=2x(x+3)-8
We move all terms to the left:
3x-2(x-5)-(2x(x+3)-8)=0
We multiply parentheses
3x-2x-(2x(x+3)-8)+10=0
We calculate terms in parentheses: -(2x(x+3)-8), so:
2x(x+3)-8
We multiply parentheses
2x^2+6x-8
Back to the equation:
-(2x^2+6x-8)
We add all the numbers together, and all the variables
x-(2x^2+6x-8)+10=0
We get rid of parentheses
-2x^2+x-6x+8+10=0
We add all the numbers together, and all the variables
-2x^2-5x+18=0
a = -2; b = -5; c = +18;
Δ = b2-4ac
Δ = -52-4·(-2)·18
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*-2}=\frac{-8}{-4} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*-2}=\frac{18}{-4} =-4+1/2 $

See similar equations:

| 4x-(3+2x)=7 | | -16x^2+52x=42.25 | | -16x^2+52x=52.25 | | -12+5x=34+x | | 5x-12=34+x | | X+(5x-12)=34 | | X+5x-12=34 | | (a-5)+(a+5)+90=180 | | 4x/3-20=-8 | | 8*w=3*w+20 | | 14-3i=2 | | (-1/3)/1=p | | -1/3/1=p | | x/5+9=0 | | 270+(2a-12)=360 | | 180+90(2a-12)+9+a=360 | | (n+5)³=0 | | 5x+8=20‐x | | 180+90(2a-12)+9=360 | | 3(2)(1+4)=9z | | 49+m=36 | | 130+(2a+20)+2a=360 | | 9x=8x+34 | | 9x=8×+34 | | 90+a+4a=360 | | 15x/3=2x-5 | | 3u+5=5/7(9+u) | | 2x/5=4x+6 | | 76=8+6b | | 3^x+2=3^4×(3^2)^3 | | a+8=6-8 | | 9x-6=x+5 |

Equations solver categories