If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x-10=(1/4)(8x+12)
We move all terms to the left:
3x-10-((1/4)(8x+12))=0
Domain of the equation: 4)(8x+12))!=0We add all the numbers together, and all the variables
x∈R
3x-((+1/4)(8x+12))-10=0
We multiply parentheses ..
-((+8x^2+1/4*12))+3x-10=0
We multiply all the terms by the denominator
-((+8x^2+1+3x*4*12))-10*4*12))=0
We calculate terms in parentheses: -((+8x^2+1+3x*4*12)), so:We add all the numbers together, and all the variables
(+8x^2+1+3x*4*12)
We get rid of parentheses
8x^2+3x*4*12+1
Wy multiply elements
8x^2+144x*1+1
Wy multiply elements
8x^2+144x+1
Back to the equation:
-(8x^2+144x+1)
-(8x^2+144x+1)=0
We get rid of parentheses
-8x^2-144x-1=0
a = -8; b = -144; c = -1;
Δ = b2-4ac
Δ = -1442-4·(-8)·(-1)
Δ = 20704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20704}=\sqrt{16*1294}=\sqrt{16}*\sqrt{1294}=4\sqrt{1294}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-4\sqrt{1294}}{2*-8}=\frac{144-4\sqrt{1294}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+4\sqrt{1294}}{2*-8}=\frac{144+4\sqrt{1294}}{-16} $
| 63+42+x=180 | | 82+36+x=180 | | F(x)=1/3(x-2)2+5 | | x=3.5/3.14 | | Y=-2.7x-2.4 | | 175m-100m+47.500=51.000-175m | | 5^2a-4-1=0 | | 0.6x-x=-240 | | 7x1=3x1 | | 3a-7=a+15 | | 3a-7=a-15 | | 10z+5=24 | | 3n+(n-2)=4n-1 | | 10t+3=43 | | 52y=13+3 | | 3/5x-2=3/2x+1/2 | | 3/5x-2=3/2x=1/2 | | -22a=-10 | | 1/89=12/x | | 2.2x+5.73=1.8x+6.54 | | 12w=63+3w | | 6-3x-x=-1 | | 4(2x-5)=3x+6 | | 4(3x+7=65 | | 4s+3=90s-2 | | 3x-13=-6x+2 | | 4+3s=90+2s | | 4+3s=90-2s | | 0.01/x=0.005 | | 0.5x34=x | | 2x(2x^2+65)=0 | | 4x^2-9=2x^2-4x |