3x-10+2x+1+8/9x+10=180

Simple and best practice solution for 3x-10+2x+1+8/9x+10=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-10+2x+1+8/9x+10=180 equation:



3x-10+2x+1+8/9x+10=180
We move all terms to the left:
3x-10+2x+1+8/9x+10-(180)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
5x+8/9x-179=0
We multiply all the terms by the denominator
5x*9x-179*9x+8=0
Wy multiply elements
45x^2-1611x+8=0
a = 45; b = -1611; c = +8;
Δ = b2-4ac
Δ = -16112-4·45·8
Δ = 2593881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2593881}=\sqrt{9*288209}=\sqrt{9}*\sqrt{288209}=3\sqrt{288209}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1611)-3\sqrt{288209}}{2*45}=\frac{1611-3\sqrt{288209}}{90} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1611)+3\sqrt{288209}}{2*45}=\frac{1611+3\sqrt{288209}}{90} $

See similar equations:

| 10(x-1)=-5(2-x)+5 | | 0.75(4x-8)=5(x+4) | | 9/7w=6 | | 9(v+2)+4v+6=7v+9 | | 5x-3(2x-6)=26 | | 5a-a=19 | | n+40=-7(n-5)+5 | | 15x+64=-11 | | -12.2x-13.4x=-179.2 | | j/10=20 | | 14x-(8x-5)=29 | | -5.2=0.4m | | x/6+12=-12  | | 2/3z=18 | | 150m-75m+48,250=50,250-175m | | 6=5(10u+8)+3 | | -.08a-8=0.2a | | k4+8=14 | | 50x6x=2100 | | 3x-12=x+39 | | 3x=-5/3 | | -15.y=42 | | 4x-3x=240 | | 12=1−2x+5 | | |-2r|=12 | | 6(x+11)=32 | | 8n-4=-2(6-4n) | | 6(1-6r)=-32+2r | | 3+5(1m-4)=-3-2m | | -3.1x-7.4x-1.5x-6(-x+3/2)+7=0 | | -2=-2/9x | | 8x+2=71+x |

Equations solver categories