3x+7x+1=2x(5x+1)+2

Simple and best practice solution for 3x+7x+1=2x(5x+1)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+7x+1=2x(5x+1)+2 equation:



3x+7x+1=2x(5x+1)+2
We move all terms to the left:
3x+7x+1-(2x(5x+1)+2)=0
We add all the numbers together, and all the variables
10x-(2x(5x+1)+2)+1=0
We calculate terms in parentheses: -(2x(5x+1)+2), so:
2x(5x+1)+2
We multiply parentheses
10x^2+2x+2
Back to the equation:
-(10x^2+2x+2)
We get rid of parentheses
-10x^2+10x-2x-2+1=0
We add all the numbers together, and all the variables
-10x^2+8x-1=0
a = -10; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·(-10)·(-1)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{6}}{2*-10}=\frac{-8-2\sqrt{6}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{6}}{2*-10}=\frac{-8+2\sqrt{6}}{-20} $

See similar equations:

| (3z-5)(8z-9)=0 | | 1+2p=11 | | y=13,099(1.01)2 | | 3(13+9)-7=4-5(6x-7) | | 23x+13=15+77 | | 11x-23=7x+17 | | 4x-6=2x+10= | | 5x-65=45 | | 125a+1=50a-33+75a+3 | | 2x+3x-30+2x=180 | | x3-3x2-33x+35=0 | | 8+6x-(3x-9)=5(x+1)+5 | | 7(x–5)=9x–3 | | 3^2x-7*3^x-18=0 | | x-14=4x-32 | | 4^x-7*2^x-8=8 | | 7x-24=9x-10 | | 7x-24=9x-9 | | 9/x−8=4 | | 49^x-12.7^x+35=0 | | (8x-18)+7x-31=32x-15 | | 1.) 2(x-7)-10=12-4x | | 4(25-c)=56 | | -6(1-v)=-5(1-v) | | (x-1)^+(x+1)^=5.5^ | | x/7+0.2=5.8 | | 3(x-7)+2(x+5)=14 | | 5y+7=18-6y | | -15z=-30 | | 2m+3/6=m-5/2 | | 5y-20=5*(y-4) | | 2p/5-1/2=3/5 |

Equations solver categories