If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+4x+5x=(2+x)(2+x)
We move all terms to the left:
3x+4x+5x-((2+x)(2+x))=0
We add all the numbers together, and all the variables
3x+4x+5x-((x+2)(x+2))=0
We add all the numbers together, and all the variables
12x-((x+2)(x+2))=0
We multiply parentheses ..
-((+x^2+2x+2x+4))+12x=0
We calculate terms in parentheses: -((+x^2+2x+2x+4)), so:We add all the numbers together, and all the variables
(+x^2+2x+2x+4)
We get rid of parentheses
x^2+2x+2x+4
We add all the numbers together, and all the variables
x^2+4x+4
Back to the equation:
-(x^2+4x+4)
12x-(x^2+4x+4)=0
We get rid of parentheses
-x^2+12x-4x-4=0
We add all the numbers together, and all the variables
-1x^2+8x-4=0
a = -1; b = 8; c = -4;
Δ = b2-4ac
Δ = 82-4·(-1)·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*-1}=\frac{-8-4\sqrt{3}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*-1}=\frac{-8+4\sqrt{3}}{-2} $
| 51-14x=-40-x | | 8-y-20y=-16-19y | | -9u+2=8-10u | | 81.25=3x+.25x | | (4^3x+2)=21 | | -10-10r=-16r=20 | | x-2=-0.16x0.3 | | -16n=-15n-13 | | -2(m-40)=6m | | 150=3x+.25x | | 7(g-5)=42 | | -5p+9=-6p | | X-2=-1/6x1/3 | | -4c-8=-4c-8 | | -7u+5(u-5)=-13 | | -q+9+9=3q+2 | | x+3/9=4/9 | | -965.8x=(-0.01) | | 150=3x+(.25x) | | 25=-8x+5(x+2) | | 6x-18=6x-54 | | 1+7c=10+10c | | 6x^2+48=40=0 | | -11z=12 | | 5p^2-100=25 | | -2k+4=-k | | m-27=82 | | 4=-11b | | -10h-10=10-6h | | 12^x=6x+3 | | -2m+10=-4-4m | | 3(78)-12=x |