3x+4=7-x(x+17)

Simple and best practice solution for 3x+4=7-x(x+17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+4=7-x(x+17) equation:



3x+4=7-x(x+17)
We move all terms to the left:
3x+4-(7-x(x+17))=0
We calculate terms in parentheses: -(7-x(x+17)), so:
7-x(x+17)
determiningTheFunctionDomain -x(x+17)+7
We multiply parentheses
-x^2-17x+7
We add all the numbers together, and all the variables
-1x^2-17x+7
Back to the equation:
-(-1x^2-17x+7)
We get rid of parentheses
1x^2+17x+3x-7+4=0
We add all the numbers together, and all the variables
x^2+20x-3=0
a = 1; b = 20; c = -3;
Δ = b2-4ac
Δ = 202-4·1·(-3)
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{103}}{2*1}=\frac{-20-2\sqrt{103}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{103}}{2*1}=\frac{-20+2\sqrt{103}}{2} $

See similar equations:

| 2/5y=12/75 | | 30-x=40x | | 2^9x-1=8^2x | | 480+16d=32 | | 64+8w=92+6 | | 8(2x-3)=3(x+7) | | o+18=412 | | 10x=28=72 | | (10x-28)=72 | | 3y-17=2y-13 | | (5x+10)+(3x-24)=90 | | 50x=420 | | (5x+10)+(3x-24)=180 | | -5+13x=11x+5 | | 29x+4=91 | | c/4+62=71 | | 10x+14=10x=12 | | 72000=24*x*2x | | 36+2=35x+5 | | 36x+2=35x5 | | -7+15x=7x+11 | | 10c+3=26 | | 100=22+22s | | (6x-16)+(4x+22)=180 | | 44-100+15s=100 | | 15s+44=100 | | 100=44+15s | | -0.3(4x-9)=8.7 | | 13a+141=180 | | 5v+145=180 | | 0.8(20x-10)=0.75(20-6x) | | w-4=48 |

Equations solver categories