3x+3/5x+261=4x-2/5x+212

Simple and best practice solution for 3x+3/5x+261=4x-2/5x+212 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+3/5x+261=4x-2/5x+212 equation:



3x+3/5x+261=4x-2/5x+212
We move all terms to the left:
3x+3/5x+261-(4x-2/5x+212)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 5x+212)!=0
x∈R
We get rid of parentheses
3x+3/5x-4x+2/5x-212+261=0
We multiply all the terms by the denominator
3x*5x-4x*5x-212*5x+261*5x+3+2=0
We add all the numbers together, and all the variables
3x*5x-4x*5x-212*5x+261*5x+5=0
Wy multiply elements
15x^2-20x^2-1060x+1305x+5=0
We add all the numbers together, and all the variables
-5x^2+245x+5=0
a = -5; b = 245; c = +5;
Δ = b2-4ac
Δ = 2452-4·(-5)·5
Δ = 60125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60125}=\sqrt{25*2405}=\sqrt{25}*\sqrt{2405}=5\sqrt{2405}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(245)-5\sqrt{2405}}{2*-5}=\frac{-245-5\sqrt{2405}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(245)+5\sqrt{2405}}{2*-5}=\frac{-245+5\sqrt{2405}}{-10} $

See similar equations:

| 2423316+n=1601812 | | 4x+15=35-4x | | -4n+20-2n=-5n+11 | | 10.000=6.000(1+0,08)n | | 3^(x/4)=444 | | 48+x+97=2x+145 | | -7(6+x)=-84 | | 18+11y=13y | | 3(x-5)-7x=12 | | 8−8a=-32 | | 2x+5=2x(7+2) | | 9/64=p2 | | 5f+4=7f-10 | | 8(8x+3)=-104 | | 5/3x+6=41 | | 19.51+0.6f=-3.6f-16.19 | | r/4+8=9 | | 81=b2 | | 11=-3x+5-10 | | 3x^2+12=-37 | | x-2/3=51/2 | | 10-8x=122 | | 20-h+20=-20-4h | | 2.5b+10=1.5b+17 | | x+56+74=2x+130 | | -15+12d=-13d-15 | | 2(4z-1)=3(z-2 | | 11-7(2x-1)=6(1+x) | | 8m-19=7 | | 4x-15=4x+12 | | –10–7x=3x+5 | | u-6=11 |

Equations solver categories