3x+2x(x-9)=8x+x+2

Simple and best practice solution for 3x+2x(x-9)=8x+x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+2x(x-9)=8x+x+2 equation:



3x+2x(x-9)=8x+x+2
We move all terms to the left:
3x+2x(x-9)-(8x+x+2)=0
We add all the numbers together, and all the variables
3x+2x(x-9)-(9x+2)=0
We multiply parentheses
2x^2+3x-18x-(9x+2)=0
We get rid of parentheses
2x^2+3x-18x-9x-2=0
We add all the numbers together, and all the variables
2x^2-24x-2=0
a = 2; b = -24; c = -2;
Δ = b2-4ac
Δ = -242-4·2·(-2)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{37}}{2*2}=\frac{24-4\sqrt{37}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{37}}{2*2}=\frac{24+4\sqrt{37}}{4} $

See similar equations:

| 6/11=3/y | | 30x-40=126 | | 15+3x-4=24 | | -2x-7=-3-5x+x | | 4r-5=3 | | y/4-13=-4 | | 5+3x-8=5x-7 | | 11c-(-4c)=15 | | 7x-10x=-30-75 | | 7x+34=144 | | 11c-16=18c-16 | | 8n+7=31+2n | | -17c+11c=-6 | | f+560=633 | | 3m-8=9 | | 2x+3(×-1)=7×+1-2(×+2) | | 3x+3x-3=36 | | -5j+7j=12 | | 40=x+11 | | 2(w+8)+2(w)=256 | | -3u-9u-7u-18=20 | | −6(8n−6)=−60 | | -11(-6r-7)=42×r+-11× | | 2x+8=8−6x+24 | | /3(2p+6)=5(p+6) | | 7x+8=3*6x-2 | | -13d-4=-12d-12 | | (x+4)+(2x)=4x-15 | | 9x+5x+19-1=180 | | X2^2+x+2+(-x)=7+2x+x2^2-2x | | 8x-6x-24=10 | | 3(2x+4)-3x-3=0 |

Equations solver categories