3x+25/x+5=6x-237

Simple and best practice solution for 3x+25/x+5=6x-237 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+25/x+5=6x-237 equation:



3x+25/x+5=6x-237
We move all terms to the left:
3x+25/x+5-(6x-237)=0
Domain of the equation: x!=0
x∈R
We get rid of parentheses
3x+25/x-6x+237+5=0
We multiply all the terms by the denominator
3x*x-6x*x+237*x+5*x+25=0
We add all the numbers together, and all the variables
242x+3x*x-6x*x+25=0
Wy multiply elements
3x^2-6x^2+242x+25=0
We add all the numbers together, and all the variables
-3x^2+242x+25=0
a = -3; b = 242; c = +25;
Δ = b2-4ac
Δ = 2422-4·(-3)·25
Δ = 58864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{58864}=\sqrt{16*3679}=\sqrt{16}*\sqrt{3679}=4\sqrt{3679}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(242)-4\sqrt{3679}}{2*-3}=\frac{-242-4\sqrt{3679}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(242)+4\sqrt{3679}}{2*-3}=\frac{-242+4\sqrt{3679}}{-6} $

See similar equations:

| 11x-8+7x+16=180 | | -(2n-4)+2(n+7)=5 | | Y=-16t^2+145t+8 | | (h+5)(h+1)(h)=180 | | 16=-4(5b-4)+20b | | -9x-2+10+2=-18x-2 | | 3z+13+104=180 | | 10a-32=18 | | X+4=-9-3x+15+8 | | 4(6x-15)=96 | | -4x+9+3x-2=13 | | 7x+3=10x+21 | | 2e=-6 | | 6^x=3x+3 | | 0.5=0.95^n | | 12y=12+8y | | -8-3n=n-2-4n | | 5(1+w-2)=20 | | 10^y=10 | | -7(m+1)=-42 | | 8.3+x=-9 | | 15w-6w=81 | | 20+k=31 | | 3x-19=-3x+15 | | 9y+4=5y-12 | | 16/916+x=(x+2)/15 | | 45=g/5+39 | | 23+4u=63 | | -6+k=-13 | | X^2+18x=208 | | X^2+18x=240 | | 1.962.800=84.000m+36.000 |

Equations solver categories