3x+1=(x-1)(x+2)

Simple and best practice solution for 3x+1=(x-1)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+1=(x-1)(x+2) equation:



3x+1=(x-1)(x+2)
We move all terms to the left:
3x+1-((x-1)(x+2))=0
We multiply parentheses ..
-((+x^2+2x-1x-2))+3x+1=0
We calculate terms in parentheses: -((+x^2+2x-1x-2)), so:
(+x^2+2x-1x-2)
We get rid of parentheses
x^2+2x-1x-2
We add all the numbers together, and all the variables
x^2+x-2
Back to the equation:
-(x^2+x-2)
We add all the numbers together, and all the variables
3x-(x^2+x-2)+1=0
We get rid of parentheses
-x^2+3x-x+2+1=0
We add all the numbers together, and all the variables
-1x^2+2x+3=0
a = -1; b = 2; c = +3;
Δ = b2-4ac
Δ = 22-4·(-1)·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4}{2*-1}=\frac{-6}{-2} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4}{2*-1}=\frac{2}{-2} =-1 $

See similar equations:

| 1/2n=25 | | 6.5y=55.35 | | x+90+x-18=180 | | 2c=c+29 | | 3+5x+2=56 | | 5x-3=7+4 | | 100=38.56+1.00x | | x+90=x-18 | | 3(x-4)+8=1(x-1) | | 5z= z+68 | | 4s+9=4s+4-5 | | 756÷n=21 | | N÷36=28n= | | 27=21-2(1-5w) | | x+x+2+x+4+x+6+x+8=135 | | x+x+2+x+4+x+6+x+8+x+10=135 | | 4x+3x-8=-12x-5 | | -14x-4=2x-8 | | 16+-1=153x=15 | | 249/x=92.2 | | -8x-4=16x-14 | | 2(2x+6)+3x=33 | | W73(w+8)=7w+27 | | 5x+11=-6x | | 26/x=34/x+4 | | X+3=7x-6 | | X=4÷5(x+10) | | -30=8v+6v-42 | | 4x+5=49* | | 9x-3=-2x+7 | | 5x0.02=5x | | 5x+16=-4x-2 |

Equations solver categories