3x+17+(1)/(2)x-5=180

Simple and best practice solution for 3x+17+(1)/(2)x-5=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+17+(1)/(2)x-5=180 equation:



3x+17+(1)/(2)x-5=180
We move all terms to the left:
3x+17+(1)/(2)x-5-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/2x-168=0
We multiply all the terms by the denominator
3x*2x-168*2x+1=0
Wy multiply elements
6x^2-336x+1=0
a = 6; b = -336; c = +1;
Δ = b2-4ac
Δ = -3362-4·6·1
Δ = 112872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112872}=\sqrt{4*28218}=\sqrt{4}*\sqrt{28218}=2\sqrt{28218}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-336)-2\sqrt{28218}}{2*6}=\frac{336-2\sqrt{28218}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-336)+2\sqrt{28218}}{2*6}=\frac{336+2\sqrt{28218}}{12} $

See similar equations:

| 3(2x-1)5=8(x+1) | | 48x=3/4 | | 16-23+4w=5w-9-11-4w | | -15=c-9 | | -2(x-3)=2(x=2) | | 3x-x+10=14-5x+3 | | x/8=0.6259 | | 9x*10.5x=30 | | 3(w-5)=3w-5w+14-17 | | 2x²+4=100 | | 7z-z=-1=3z-1-1 | | (8n^2-5)(n+3)=0 | | 3x+1=3(x-2)-1 | | 21-5d=-34 | | 14+7c=147 | | 4x+3x-21=181 | | 8-17f=18f | | -4(m-2)=-8(2m+2) | | 3x-15=6x+45 | | -58=f+-57 | | n-57=-46 | | 10-5x=-115 | | 2a-24=-8 | | 2x+12+7x-27=95 | | 5(x+6-2x=3(x+10) | | 8y-3=16-(1+-2y) | | 16–(7m+3)=8(1–m) | | 5(2x+6)=8x+485 | | -26=s-53 | | 3(6+x)=3 | | v-71=-46 | | v−71=–46 |

Equations solver categories