If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+12x^2=0
a = 12; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·12·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*12}=\frac{-6}{24} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*12}=\frac{0}{24} =0 $
| 3x+6=-2x+9 | | 50r^2-32=0 | | .5(-3.3)(t^2)+30t=100 | | 9t+10-7t=390 | | 6(x+3)=20 | | -7x+7=x^2 | | (18/m^2-3m)+2=6/m-3 | | 4/5x+3/10=11/2x+3/5 | | 61z-83=z+59 | | 2(n-2)=40 | | (4/5x)+(3/10)=(11/2x)+(3/5) | | 18/m^2-3m+2=6/m-3 | | {6x+27)/x=15 | | 2.5x^2-20x=0 | | 7k2-19k-6=0 | | 35-3b=-7(6b-5) | | (x+6)^2=x^2+9x+19 | | -6-5r=-7r | | 12=−r−11 | | y+(-49)=84 | | 2(-4)=5(r+-7) | | 4+11x-2=6x+44-2x | | 1/4=4/5+y | | 27=3+8m | | 16–3p=34 | | y=3+29/2 | | 9(x+1)+3=4x+5(3+x) | | 9y^2-54y-27=0 | | x(25x-10+1)=0 | | 6=7v+6/4+v+6/8 | | 3(x+4)^2=54 | | 16-2x=3/2x+9 |