3x+10=7/2x+5

Simple and best practice solution for 3x+10=7/2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+10=7/2x+5 equation:



3x+10=7/2x+5
We move all terms to the left:
3x+10-(7/2x+5)=0
Domain of the equation: 2x+5)!=0
x∈R
We get rid of parentheses
3x-7/2x-5+10=0
We multiply all the terms by the denominator
3x*2x-5*2x+10*2x-7=0
Wy multiply elements
6x^2-10x+20x-7=0
We add all the numbers together, and all the variables
6x^2+10x-7=0
a = 6; b = 10; c = -7;
Δ = b2-4ac
Δ = 102-4·6·(-7)
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{67}}{2*6}=\frac{-10-2\sqrt{67}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{67}}{2*6}=\frac{-10+2\sqrt{67}}{12} $

See similar equations:

| 6/9x^2-4x=0 | | 7x-8=2,5 | | 5x+10=10x−10 | | -8k-40=8(3+3k) | | (3x+28)^1/2=x | | 3^x9^2=81^x•1/9 | | x+5x=10+3 | | Z/3+3z/4=9/2(z-1) | | (1/y)+(5/y)=2 | | −(3x−2)=−4(x+1)−4 | | 2(3+4x)=7(x-4) | | -9x-(13x+8)=8+(3x+7) | | 13y=20y-56 | | 9+3n=7n+1 | | 9y-4=8y | | -7b-37=6(-b-5) | | 6x÷8=72 | | 5x×x=300 | | 7+a/2=13 | | 4(x-1)+9=17 | | 4/7x=38 | | 166=9x+40 | | 7x+5(-4)=-6 | | 33+5=p | | 3w-9=51 | | -112=-7(2n+4) | | 2y-2=5y-11 | | 3(-2x+1)+5=3x-4-5x | | 11-2x=12x | | 12n^2-5n-3=0 | | 8x-15=3x=30 | | -36n2-18n-95=0 |

Equations solver categories