If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+(86x^2)=73
We move all terms to the left:
3x+(86x^2)-(73)=0
determiningTheFunctionDomain 86x^2+3x-73=0
a = 86; b = 3; c = -73;
Δ = b2-4ac
Δ = 32-4·86·(-73)
Δ = 25121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{25121}}{2*86}=\frac{-3-\sqrt{25121}}{172} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{25121}}{2*86}=\frac{-3+\sqrt{25121}}{172} $
| 37+90+x=143 | | -2x-5=30 | | 8y=6y+7/ | | 16+x=126 | | Y=4.3(2*x) | | 6x-12+64+74=180 | | 6c=9(c-2) | | 5c-0.75=11 | | 3x-15+4x-7+90=180 | | 6(n-3)-4=84 | | 20+8u=13u-20 | | a-5=-7+1 | | 6x(x-8)=32 | | 6x(x=8)=32 | | 10d2-55d+75=0 | | (7t^2-4t+3)=t^2+1-1 | | x=(2468)/((510-115))+(2468)/((510+115)) | | 18=2(y-6)-7y | | 7+8d=63 | | X^2+13x-15=10x | | X^2+13x-15=10 | | 2(x+7)+2x+(4x-2)=2.5x | | 9-1y=8 | | 9+7y=44 | | x^2+15x+90=-4x | | 2x-3.5=-21.5 | | x^2+8x-11=6x-8 | | -3(-2x+23)+12=6(.4x+9)+9 | | -3(.2x+23)+12=6(-4x+9)+9 | | 4x=(2x+60) | | -7+3y=35 | | 9x-40=83 |